Abschätzung mittlerer Schwingungsamplituden der Metall—Sauerstoff-Bindungen einiger Hexaoxometallate

Von

Enrique J. Baran

Aus der Cátedra de Química Inorgánica, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentinien

(Eingegangen am 4. August 1975)

Estimation of Mean Amplitudes of Vibration for the Metal Oxygen Bonds of Some Hexaoxometalates

Mean amplitudes of vibration of a series of hexaoxometalates have been estimated using an approximation method and recently reported spectroscopic data arising from the study of the respective lithium salts.

Über die Schwingungseigenschaften von Hexaoxometallaten ist noch sehr wenig bekannt (vgl. z. B. ¹). Wir haben vor kurzem den Valenzschwingungsbereich einiger Lithium-hexaoxometallate an Hand ihrer Raman- und Infrarot-Spektren untersucht und eine grobe Abschätzung der Kraftkonstanten für die entsprechenden Metall—Sauerstoff-Bindungen durchgeführt².

Um die Bindungseigenschaften dieser Systeme weiter zu charakterisieren, haben wir jetzt auch eine Abschätzung der Werte ihrer mittleren Schwingungsamplituden unternommen.

Wie wir bereits früher betont haben², kann man in diesen Verbindungen kaum noch vom Vorliegen absolut "isolierter" MO_6 -Oktaeder im Gitter sprechen. Obwohl z. B. Corsmit et al.³ bei Verbindungen des Typs Ba₂CaWO₆, Ba₂CaTeO₆ usw. deutlich alle für ein Oktaeder zu erwartenden Schwingungen spektroskopisch auffinden und zuordnen konnten, war dies bei den von uns untersuchten Lithiumhexaoxometallaten nicht der Fall. Deshalb sind wir zur Berechnung von mittleren Schwingungsamplituden von vornherein auf die Anwendung von stark simplifizierten Methoden und Näherungen angewiesen.

In allen Fällen konnten wir im Valenzschwingungsbereich lediglich zwei Schwingungen deutlich festlegen: eine symmetrische, die ungefähr der A_{1g} -Schwingung des "isolierten" Oktaeders entspricht,

und eine antisymmetrische, welche ungefähr der F_{1u} -Schwingung des freien Oktaeders entsprechen würde. Wir haben den gewogenen Mittelwert dieser beiden Schwingungen [d. h. $(A_{1g}+3\,F_{1u})\,\%\,4$] als charakteristische Valenzschwingungsfrequenz für diese Bindungen angenommen und aus dieser einzigen Schwingungsfrequenz den Wert für die Amplitude abzuschätzen versucht.

	- Control Control Control					
Anion a	<i>T</i> , °K	nach Gl. (1)	Literatur ⁶			
MoO ₆ 6-	0,0	0,043	0,0440			
	298,16	0,045	0,0461			
	500,0	0,051	0,0518			
WO_6 6-	0,0	0,041	$0,0417^{\mathrm{b}}$			
	298,16	0,043	$0,0434\mathrm{b}$			
	500,00	0,048	$0,0484^{\mathrm{b}}$			
${ m TeO_6}^{6-}$	0,0	0,041	0,0415			
	298,16	0,043	0,0433			
	500,0	0,047	0,0484			

Tabelle 1. Mittlere Schwingungsamplituden einiger Hexaoxometallate (in Å)
bei verschiedenen Temperaturen

Bekanntlich kann man nach Kimura und Kimura⁴ die mittlere Schwingungsamplitude einer Normalkoordinate mit charakteristischer Schwingungsfrequenz nach folgender Gleichung berechnen (vgl. auch ⁵):

$$u_{XY}^2 = \frac{16,8575 (\mu_X + \mu_Y)}{\nu_1} \coth\left(\frac{0,71939 \nu_1}{T}\right)$$
 (1)

wobei u_{XY}^2 die quadratische mittlere Schwingungsamplitude der X—Y-Bindung ist; μ_X und μ_Y sind die Reziproken der Massen der Atome X und Y, ν_I die charakteristische Schwingungsfrequenz der X—Y-Bindung (in cm $^{-1}$).

Um die Anwendbarkeit dieser Gleichung auf die uns interessierenden Systeme zu prüfen, haben wir sie zunächst auf einige Hexaoxometallate angewandt, für welche mittlere Schwingungsamplituden aus vollständiger Rechnung bekannt sind⁶ (diese sind zugleich die einzigen Hexaoxometallate, für welche Amplitudenwerte bekannt sind). Die Ergebnisse sind in Tab. 1 zusammengestellt und wie man hieraus deutlich entnehmen kann, liegen die durch Gl. (1) erhaltenen Werte den Literaturdaten sehr nahe.

^a Frequenzwerte von ³.

b Mittelwerte aus Ba₂CaWO₆ und Ba₂MgWO₆.

Tabelle 2. Mittlere Schwingungsamplituden einiger Hexafluoride (in Å)

Species	T , ${}^{\circ}{ m K}$	nach Gl. (1)	Literatur ⁷
SF ₆	0,0	0,040	0,0413
	298,16	0,040	0,0418
SeF_6	0,0	0,038	0,0387
	298,16	0,039	0,0399
${ m WF}_6$	0,0	0,037	0.0372
	298,16	0,038	0.0375
ReF_{6}	0,0	0,037	0.0372
	298,16	0,038	0.0376
RuF_{6}	0,0	0,038	0,0390
	298,16	0,039	0.0405

Tabelle 3. Benutzte Valenzschwingungsfrequenzen (in cm⁻¹)

Verbindung	v_{s}	vas	ν ₁ a
${ m Li_6TeO_6}$	700	640	655
${ m Li_6WO_6}$	825	630	679
$\mathrm{Li}_{7}\mathrm{BiO}_{6}$	590	≈ 550	560
$\text{Li}_7 \text{NbO}_6$	790	610	655
${ m Li_8PbO_6}$	600	≈ 490	518
Li_8SnO_6	640	≈ 530	558
$\mathrm{Li_8HfO_6}$	530	≈ 480	493

 $v_1 = (v_s + 3 v_{as}) \cdot /. 4.$

Tabelle 4. Mittlere Schwingungsamplituden (in Å) der Metall—Sauerstoff-Bindungen einiger Hexaoxometallate

Species	0,0 °K	298,16 °K	500,0 °K
TeO ₆ 6-	0.043	0,044	0,050
WO_6^{6-}	0,041	0,043	0,047
BiO ₆ 7-	0,045	0,048	0,055
$\mathrm{NbO_{6}^{7-}}$	0,043	0,045	0,051
PbO_6 8	0,047	0,051	0,059
$\mathrm{SnO_6^{8-}}$	0,046	0,050	0,057
$\mathrm{HfO_{6}^{8-}}$	0,048	0,053	0.062

Weiterhin haben wir die Methode auch noch an einer Reihe oktaedrischer Hexafluoride geprüft, für welche ebenfalls Daten aus vollständigen Rechnungen bekannt sind (Tab. 2). Auch in diesen Fall zeigt sich eine sehr gute Übereinstimmung.

Da also diese zwei Rechenversuche deutlich gezeigt haben, daß die vorgeschlagene Näherungsmethode zur Abschätzung von mittleren

Schwingungsamplituden der gebundenen Atompaare von oktaedrischen Species geeignet ist, haben wir sie auf die uns interessierenden Hexaoxometallate angewandt. Die benutzten Schwingungsfrequenzen wurden unserer früheren Arbeit² entnommen und sind in Tab. 3 nochmals zusammengestellt. Die Ergebnisse dieser Berechnungen, jeweils für drei verschiedene Temperaturen, sind Tab. 4 zu entnehmen.

Tabelle 5.	Kraftkonstanten					und	mittle re
	Schwingungse	amn	dituden (in	Å) bei	298.16 °K		
		<u>r</u>		,			

Species	f_T	N	$u_{ m MO}$
WO ₆ 6-	3,7	1,2	0,043
${ m TeO_6}^{6-}$	3,3	1,1	0,044
$\mathrm{NbO_6}^{7-}$	3,2	1,1	0,045
BiO ₆ 7-	~ 2.6	~ 1,0	0,048
$\mathrm{SnO_6}^{8-}$	~ 2.4	~ 0.8	0,050
PbO_6^{8-}	~ 2.2	~ 0.8	0,051
$\mathrm{HfO_{6}^{8-}}$	~ 2.0	~ 0.8	0,053

Die erhaltenen Werte liegen in den meisten Fällen bedeutend höher als diejenigen, die für Metall—Sauerstoff-Bindungen berechnet wurden, bei welchen tetraedrische Sauerstoffkoordination am Metallatom vorliegt^{8, 9}. Dies war auch zu erwarten, da ja bei tetraedrischer Koordination die Metall—Sauerstoff-Bindungen meistens einen erheblichen π -Anteil enthalten, der im Falle der oktaedrischen Koordination, wenn überhaupt noch vorhanden, verschwindend klein ist. Bekanntlich führt eine stärkere Bindung zur Erhöhung der MO-Kraftkonstante und zu einer entsprechenden Erniedrigung der mittleren Schwingungsamplitude (vgl. z. B. 10 , 11).

Tab. 5 bringt weiterhin noch eine zusammenfassende Betrachtung der bisher bekannten Bindungseigenschaften dieser Species. Die Bindungsordnungen (N) wurden nach der Methode von $Siebert^{12}$ berechnet. Man sieht deutlich, daß — mit Ausnahme von TeO_6^{6-} und WO_6^{6-} und wahrscheinlich auch von NbO_6^{7-} —, bei allen anderen Anionen keine π -Bindungsanteile mehr vorliegen.

Alle Berechnungen wurden an einem IBM-360-Computer (CESPI-UNLP) durchgeführt.

Diese Arbeit wurde mit Unterstützung des "Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina" durchgeführt.

Literatur

- ¹ K. H. Schmidt und A. Müller, Coord. Chem. Rev. 14, 115 (1974).
- ² A. Müller, E. J. Baran und J. Hauck, Spectrochim. Acta 31 A, 801 (1975).
- ³ A. F. Corsmit, H. E. Hoefdraad und G. Blasse, J. inorg. nucl. Chem. 34, 3401 (1972).
- ⁴ K. Kimura und M. Kimura, J. chem. Phys. 25, 362 (1956).
- ⁵ E. J. Baran, Z. physik. Chem. [Leipzig] **255**, 1022 (1974).
- ⁶ A. N. Pandey, D. K. Sharma und A. K. Dublish, Spectr. Lett. 6, 491 (1973).
- ⁷ E. J. Baran, Mh. Chem. **105**, 362 (1974).
- ⁸ A. Müller und S. J. Cyvin, J. Mol. Spectr. 26, 315 (1968).
- ⁹ E. J. Baran, Mh. Chem. **106**, 121 (1975).
- ¹⁰ E. J. Baran, Z. anorg. allg. Chem. **399**, 57 (1973).
- ¹¹ A. Müller, E. J. Baran und K. H. Schmidt, Characteristic Mean Amplitudes of Vibration, in: Molecular Structures and Vibrations (S. J. Cyvin, Hrsg.). Amsterdam: Elsevier. 1972.
- ¹² H. Šiebert, Anwendungen der Schwingungsspektroskopie in der Anorganischen Chemie. Berlin-Heidelberg-New York: Springer. 1966.

Korrespondenz und Sonderdrucke:

Prof. Dr. E. J. Baran Facultad de Ciencias Exactas Calle 47 esq. 115 La Plata Argentinien